Browsing all articles tagged with nanobelt

Grain-sized nanotechnology electronic noses are on the horizon

electronic noseImagine a device the size of a grain of sand which is capable of analyzing the environment around it, recognize its chemical composition, and report it to a monitoring system. This is the concept of nanotechnology-based electronic noses (e-nose) – miniature electronic devices which mimic the olfactory systems of mammals and insects.

An international team of researchers has made a further step towards this vision and demonstrated a novel analytical sensor which mimics our olfaction system. The difference between this and similar prior e-noses is that the active element of this new device is an individual wedge-like nanowire (nanobelt) made of tin dioxide. The required diversity of the sensing elements is encoded in the nanobelt morphology via longitudinal width variations of the nanobelt realized during its growth and via functionalization of some of the segments with palladium catalyst. “Our approach demonstrates the potential of combining bottom-up nanowire fabrication protocols with state-of-the art microfabrication methods to design prospective simple sensing arrays which, in principle, might be scaled down to the size of few micrometers and thus become the smallest analytical instrument,” tells Andrei Kolmakov, an associate professor in the physics department at Southern Illinois University at Carbondale.

Kolmakov and a team of researchers from Karlsruhe Institute of Technology, Rensselaer Polytechnic Institute, Sincrotrone Trieste, and first author Victor V. Sysoev from Saratov State Technical University, have published their findings in ACS Nano. In what probably is the simplest and yet fully functioning e-nose, the device is made of an individual single-crystal metal oxide quasi-1D nanobelt. The nanobelt was indexed with a number of platinum electrodes in a way that each segment of the nanobelt between two electrodes defines an individual sensing elemental receptor of the array.

read more